Factorisation Systems on Domains

نویسنده

  • Mathias Kegelmann
چکیده

We present a cartesian closed category of continuous domains containing the classical examples of Scott-domains with continuous functions and Berry's dI-domains with stable functions as full cartesian closed subcategories. Furthermore, the category is closed with respect to bilimits and there is an algebraic and a generalised topological description of its morphisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantised coordinate rings of semisimple groups are unique factorisation domains

We show that the quantum coordinate ring of a semisimple group is a unique factorisation domain in the sense of Chatters and Jordan in the case where the deformation parameter q is a transcendental element.

متن کامل

Ja n 20 05 Quantum unique factorisation domains

We prove a general theorem showing that iterated skew polynomial extensions of the type which fit the conditions needed by Cauchon's deleting derivations theory and by the Goodearl-Letzter stratification theory are unique factorisation rings in the sense of Chatters and Jordan. This general result applies to many quantum algebras; in particular, generic quantum matrices and quantized enveloping...

متن کامل

On the monad of proper factorisation systems in categories (*)

It is known that factorisation systems in categories can be viewed as unitary pseudo algebras for the monad P = (–)2, in Cat. We show in this note that an analogous fact holds for proper (i.e., epimono) factorisation systems and a suitable quotient of the former monad, deriving from a construct introduced by P. Freyd for stable homotopy. Some similarities of P with the structure of the path end...

متن کامل

GCD and Factorisation of multivariate polynomials

Some widely known techniques can be used to factorise univariate polynomials over the domain of integers. However, finding algorithms which factorise univariate and multivariate polynomials over Z and other domains is a little trickier. Several factorisation algorithms first need GCDs of the polynomials. Computing GCDs of polynomials is also necessary for adding rational functions. Both problem...

متن کامل

Stability analysis of block LDLT factorisation for symmetric indefinite matrices

[September 5, 2008; revised December 6, 2009] We consider block LDLT factorisation for symmetric indefinite matrices in the form LDLT , where L is unit lower triangular and D is block diagonal with each diagonal block having dimension 1 or 2. The stability of this factorisation and its application to solving symmetric indefinite linear systems has been well studied. On the other hand, while all...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Categorical Structures

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1999